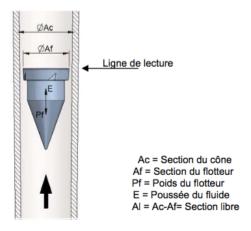


Débitmètres tube verre Série 2000

Débitmètre à section variable pour faibles débits de liquides et gaz

- Longueur de montage réduite et construction très compacte, spécialement indiqué pour panneaux de contrôle
- Installation facile. Ne nécessite pas de longueurs droites amont et aval
- Montage vertical fluide ascendant, avec entrée et sortie horizontale arrière
- Robinet de réglage fin à pointeau conique pour régler avec précision le débit (en option sans robinet)
- Echelles calibrées en l/h, l/min, %, etc
- Etendue de mesure :
 - Eau: 0,1 l/h ... 1000 l/h
 - Aire 1 NI/h ... 30 Nm³/h
- · Précision:
 - Modèle 2100 : 3,5% (qG=50%)
 - Modèle 2150 : 3% (qG=50%)
 - Modèles 2300 / 2340 : 1,6% (qG=50%)
- Raccordements:
 - 2100/2150/2300: 1/4"BSP/NPT
 - 2340: 1/2"BSP/NPT
- Matériaux:
 - Tube de mesure : verre borosilicate
 - Parties en contact avec le fluide : EN 1.4404 (AISI 316L)
 - Flotteur : EN 1.4404 (AISI 316L), aluminium, verre, plastique, céramique
- Indication locale
- Options:
 - 1 ou 2 automatismes
 - Régulateurs de débit constant RCA ou RCD


Principe de fonctionnement

Les débitmètres de la série 2000 fonctionnent selon le principe de la section variable, obtenu avec un flotteur qui se déplace à l'intérieur d'un tube verre conique.

Le débit circulant déplace le flotteur, jusqu'à une hauteur dans le tube conique, ou s'équilibrent les forces de :

- E = poussée du fluide
- Pf = poids du flotteur
- Al = section libre de passage

(Al = Ac, section du cône Af, section du flotteur) Chaque position du flotteur correspond à une valeur de débit.

Applications

- Panneaux de contrôle et pilotes
- · Contrôle et mesure sur machines
- · Contrôle et recherche en laboratoire
- Contrôle pour circuits de réfrigération
- Contrôle des brûleurs de gaz et Fours de traitement
- Industries Chimique, Pharmaceutique et Cosmétique
- · Mesure de niveau avec régulateurs RCD

Modèles

- 2100 longueur du tube de mesure 100 mm
- 2150 longueur du tube de mesure 150 mm
- 2300 longueur du tube de mesure 300 mm
- 2340 longueur du tube de mesure 300 mm

Caractéristiques techniques

 Précision, selon VDI/VDE 3513 page 2 (qG=50%):

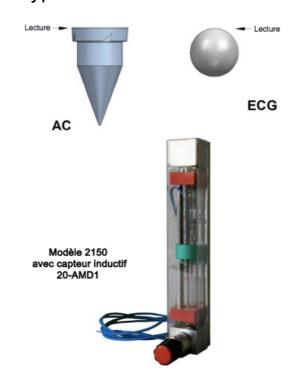
- 2100 : 3,5% - 2150 : 3%

- 2300 / 2340 : 1,6%

Echelles directes en unités de débit ou en %

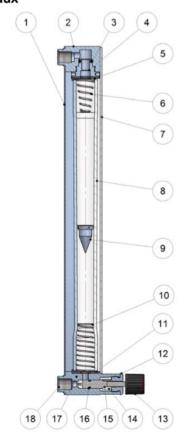
Etendue de mesure : 10:1

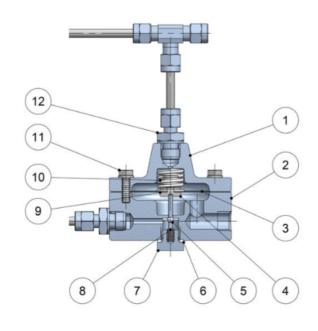
- Température du fluide : 20oC ... +80oC
 Température ambiante : 20oC ... +80oC
- Pression de travail : 15 bar max.
- · Raccordements:
 - 2100/2150/2300: 1/4"BSP/NPT
 - 2340: 1/2"BSP/NPT
- · Valve de réglage :
 - Montée à l'entrée pour les applications liquide et gaz à la pression atmosphérique
 - Montée à la sortie pour les applications gaz sous pression


Montage

Vertical avec fluide ascendant, entrée et sortie horizontales arrières

Automatismes et accessoires


- 20AMD1 ... 2 : 1 ou 2 contacts inductifs réglables (relais EN 6094756 NAMUR, sur demande)
- 20AMO1 ... 2: 1 ou 2 contacts optiques réglables (avec relais amplificateur dans boîtier aluminium)
- 20AMR1 ... 2: 1 ou 2 contacts reed réglables
- Régulateur de débit constant :
 - RCA: Variations de pression à l'entrée et pression constante à la sortie
 - RCD: Variations de pression à la sortie et pression constante à l'entrée

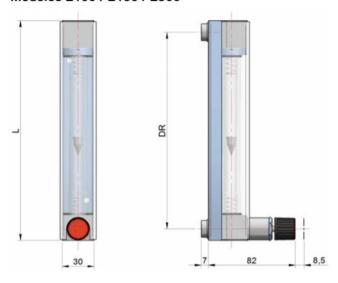

Types de flotteur

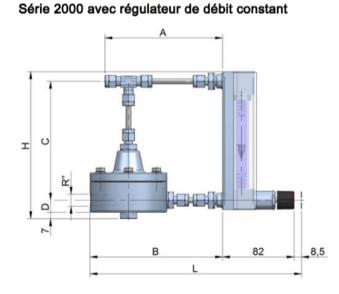
Matériaux

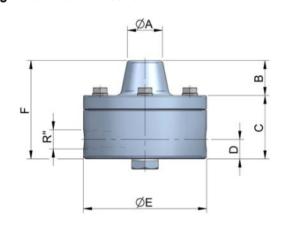
2100 / 2150 / 2300 / 2340

Nº	Désignation	Matériaux
1	Monture	EN 1.4404 (AISI 316L)
2	Tête supérieure	EN 1.4404 (AISI 316L)
3	Joints toriques piston	NBR / VITON® / EPDM
4	Piston	EN 1.4404 (AISI 316L)
5	Joint supérieur	NBR / VITON® / EPDM
6	Ressort	EN 1.4319 (AISI 302)
7	Capôt de protection	Polycarbonate*
8	Tube de mesure	Verre borosilicate
9	Flotteur	EN 1.4404 (AISI 316L) Verre / Céramique Plastique / Aluminium
10	Ressort	EN 1.4319 (AISI 302)
11	Joint inférieur	NBR / VITON® / EPDM
12	Tête inférieure	EN 1.4404 (AISI 316L)
13	Bouton de réglage	Plastique
14	Pointeau	PTFE
15	Axe valve	EN 1.4404 (AISI 316L)
16	Joint torique valve	NBR / VITON®/ EPDM
17	Siège robinet	PTFE
18	Connexion	EN 1.4404 (AISI 316L)

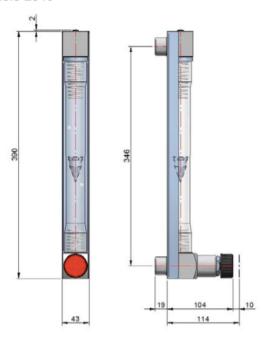
Régulateur de débit constant RCD / RCA


_		
N°	Désignation	Matériaux
1	Corps-membrane	EN 1.4404 (AISI 316L)
2	Corps-valve	EN 1.4404 (AISI 316L)
3	Membrane	NBR / PTFE / VITON®
4	Siège soupape	EN 1.4404 (AISI 316L)
5	Soupape de régulation	EN 1.4404 (AISI 316L)
6	Joint	NBR / PTFE
7	Embase	EN 1.4404 (AISI 316L)
8	Ressort soupape	EN 1.4319 (AISI 302)
9	Dique membrane	EN 1.4404 (AISI 316L)
10	Ressort membrane	EN 1.4319 (AISI 302)
11	Vis	EN 1.4401 (AISI 316)
12	Connexion	EN 1.4401 (AISI 316)


^{*} Modèle 2340, sans protection


Dimensions

Modèles 2100 / 2150 / 2300



Régulateur de débit constant

Toutes les dimensions sont en mm

Modèle 2340

Débitmètre

Modèle	DR	L	R" BSP/NPT	Poids kg
2100	136	158	1/4"	0,70
2150	186	208	1/4"	0,85
2300	336	358	1/4"	0,85
2340	346	390	1/2"	1,80

Débitmètre + régulateur de débit constant

Modèle	Débit l/h eau *	Α	В	С	D	н	L	R" BSP/NPT
2100 2150	≤ 10-100	150	170	136 186	13	172 222	266	1/4"
2300	≤ 25-250	150	170	336	13	372	266	
2340	≤ 60-630	180	200	346	18	397	320	1/2"

^{*} Egalement pour les débits équivalents en air, selon tables page 5

Régulateur de débit constant

Modèle	R" BSP/NPT	ØA	В	С	D	ØE	F	Poids kg
RCA RCD	1/4"	35	11	52	13	88	63	2,5
RCA *	1/2"	40	16	65	18	100	81	3

^{*} pour débitmètre modèle 2340

Plages de débit

		Echelles de débit, flotteur type ECG						
Cône Nº	Long.	l/h eau			ΔP			
	(mm)	AISI 316L (EN 1.4404)	VERRE	AISI 316L (EN 1.4404)	VERRE	PLASTIQUE	CERAMIQUE	
Modèle 2100								
C110/0001		0,1-1	0,05-0,5	4-40	1-15	1-11	2-20	5
C110/0002		0,2-2,5	0,1-1	8-80	4-40	2-16	6-60	10
C111/0005		0,5-5	0,2-2	15-160	7-70	2-25	10-100	15
C111/0010	100	1-10	0,4-4	30-350	10-210	10-110	30-260	20
C111/0016	100	1,6-16	0,6-6	40-490	20-250	10-140	30-330	35
C112/0025		2,5-25	1-10	80-840	40-420	20-270	50-560	40
C113/0040		4-40	1,6-16	120-1200	70-700	40-420	80-880	45
C114/0060		6-60	2-20	200-2200	100-1200	70-800	150-1500	50
C115/0100		10-100 *	4-40	300-3500	150-1800	100-1100	200-2400	55
Modèle 2150								
C210/0001		0,1-1	0,05-0,5	3-30	1-12	1-10	2-15	5
C210/0002		0,2-2,5	0,1-1	10-110	4-40	2-16	6-60	10
C211/0005		0,5-5	0,2-2	15-180	8-80	3-30	10-110	15
C211/0010	150	1-10	0,4-4	30-350	15-180	10-100	20-230	20
C211/0016	150	1,6-16	0,6-6	50-510	25-260	10-150	30-340	35
C212/0025		2,5-25	1-10	80-830	40-440	20-270	50-540	40
C213/0040		4-40	1,6-16	130-1300	70-700	40-440	80-880	45
C214/0060		6-60	2-20	150-2100	100-1100	70-740	100-1400	50
C215/0100		10-100 *	4-40	300-3600	150-1900	100-1200	100-2400	55

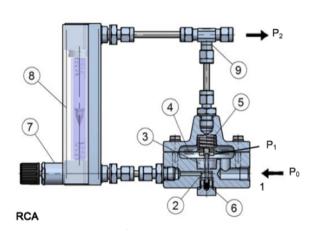
^{*} Disponible également avec flotteur AC

		Echelles de débit, flotteur type AC, excepté Verre flotteur type ECG						
Cône Nº	Long.	l/h eau			ΔP			
	(mm)	AISI 316L (EN 1.4404)	VERRE	AISI 316L (EN 1.4404)	ALUMINIUM	PVC	PTFE	
Modèle 2300								
C311/0025		2,5-25	1-10	120-860	60-490	40-340	40-370	55
C311/0040		4-40	1,6-16	150-1300	80-800	50-530	50-630	80
C311/0060		6-60	2-20	150-2000	100-1100	60-800	60-900	110
C312/0100		10-100		300-3000	180-1800			130
C312/0160	300	16-160		490-4900	300-2900			160
C312/0250		25-250		770-7700	460-4600			180
Modèle 2340								
C313/0400		40-400		1200-12000	740-7300			90
C313/0630		60-630		1900-19000	1100-11000			200
C313/1000		100-1000		3000-30000	1800-18000			300

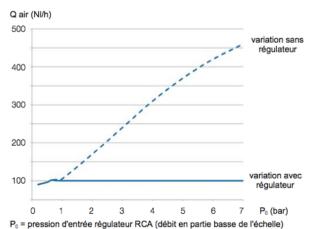
Régulateurs de débit constant

Les débitmètres de la série 2000 sont prévus pour intégrer les régulateurs RCA et RCD, qui permettent de maintenir un débit constant lorsque la pression de travail, à l'entrée ou à la sortie varient.

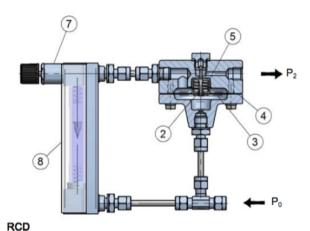
Pour les applications gaz, le modèle RCA est utilisé sur les installations lorsque la pression est variable à l'entrée et la pression de sortie ou contre pression est constante, alors que le modèle RCD est utilisé sur les installations ou la pression est constante à l'entrée et la pression ou contre pression est variable. Pour les liquides ont utilise toujours le modèle RCA.

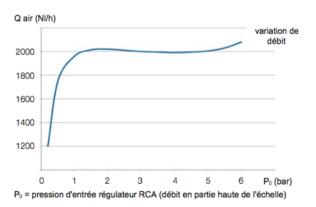

Fonctionnement régulateur RCA: pression variable à l'entrée et constante à la sortie. L'entrée du fluide avec pression amont variable se fait par le raccord (1), et passe par la robinet de réglage (2), dans la chambre du régulateur (3), ou se crée une nouvelle pression inférieure P₁, agissant sur la membrane (4). Le robinet de réglage (2) relié à la membrane (4) est initialement

ouvert sous l'action du ressort régulateur (5). Ensuite le fluide passe par la chambre (3) du régulateur, puis par le robinet du débitmètre (7), et par le tube de mesure (8), en s'échappant par le raccord (9) avec la contre pression de sortie constante P_2 , qui agit également sur la membrane (4).


Les ressorts (5 et 6) sont construits de telle manière qu'ils ouvrent le robinet (2) quand la pression amont P_0 diminue et le ferment quand P_0 augmente, de façon à maintenir le débit constant préréglé par le robinet de réglage (7) du débitmètre.

La pression différentielle entre P_0 et P_2 doit toujours être supérieure à 350-450 mbar selon le modèle, celle-ci est le minimum nécessaire pour un bon fonctionnement des ressorts (5 et 6).


Fonctionnement régulateur RCD: pression constante à l'entrée et variable à la sortie. Fonctionne pareillement, avec position différenciée du robinet du débitmètre (7), selon le schéma.



Les courbes de débit montrent le rapport entre la pression d'entrée P_0 et la contre pression P_2 dans un régulateur RCA. les différentes valeurs de débit sont réglées au moyen du robinet du débitmètre (7). La contre pression P_2 , dans ce cas, est la pression atmosphérique.

La courbe en pointillé montre les variations de débit sans l'action du régulateur de pression. Avec le régulateur de débit, pour une variation de 100% de la pression d'entrée $P_{\rm 0}$, la variation de la valeur de débit est inférieure à 1%.

Q air (NI/h)

100

90

variation de débit

0 1 2 3 4 5 6 P₂ (bar)

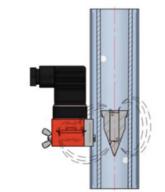
P₂ = pression de sortie régulateur RCD (débit en partie basse de l'échelle)

Contact réglable 20-AMR

(Echelles de 10 - 100 l/h eau et équivalent en air)

Contact reed bistable actionné par le champ magnétique du flotteur, monté dans un boîtier en PVC. Avec flotteur aimanté. Les appareils avec contact 20-AMR sont livrés sans fenêtre de protection.

• 20-AMR1 ... 2 : 1 ... 2 contacts réglables


• I_{max}: 0,5 A; V_{max}: 250 V; P_{max}: 12 VA

• Hystérésis : ±5% valeur fin d'échelle

Température ambiante : -25°C ... +80°C

 Conforme pour zone classée considéré comme "Matériel Simple"

 Disponible pour modèles 2100 et 2150 (contact 20-AMR), pour 2300 (contact 23-AMR) et pour 2340 (contact 24-AMR)

20-AMR

Contact réglable 20-AMD

(Echelles jusqu'à 6 - 60 l/h eau et équivalent en air)

Contact annulaire inductif selon norme EN 60947-5-6 (NAMUR), monté dans boîtier en plastique (PBT). Actionnement par flotteur. Convient uniquement pour flotteur AISI 316L.

• 20-AMD1 ... 2 : 1 ... 2 contacts réglables

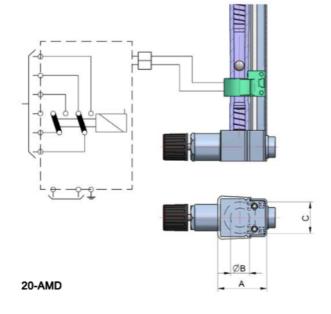
• Alimentation : 8 VDC

Température ambiante : -25°C ... +70°C

• Certifié ATEX Ex ia IIC T4...T6 Ga / Ex ia IIIC T85°C Da

• Disponible pour modèles 2100 et 2150

Relais de commande (sur demande)


NAMUR (EN 60947-5-6) pour 1 ou 2 contacts inductifs.

• Alimentation : 24 ... 253 VAC 50-60 Hz / 24 ... 300 VDC

Entrée : NAMUR Ex ia IICSortie : 1 ou 2 sorties relais

Pouvoir de coupure : 2 A 250 VAC 100 VA / 1 A 24 VDC

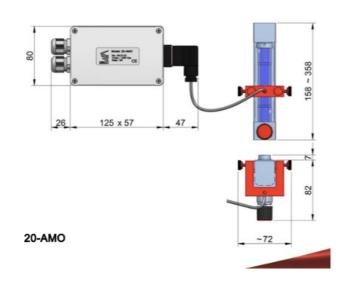
Température ambiante : -25°C ... +70°C

Contact réglable 20-AMO

(Echelles jusqu'à 25 - 250 l/h eau et équivalent en air)

Contact optique par infra rouge, actionnement par interruption du faisceau lors du passage du flotteur, monté dans une embase plastique et relais de commande en boîtier aluminium. Convient pour tous types de matériaux de flotteur, sauf verre. Les appareils avec contact 20-AMO sont livrés sans fenêtre de protection.

• 20-AMO1 ... 2 : 1 ... 2 contacts réglables


• I_{max}: 1A; V_{max}: 220 VAC / 50Hz

• Hystérésis : ±5% valeur fin d'échelle

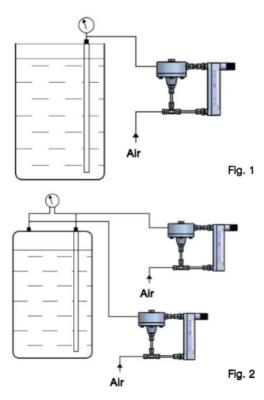
• Température ambiante : -10°C ... +80°C

• Alimentation: 220 VAC / 50Hz ou 24 VDC

• Disponible pour modèles 2100, 2150 et 2300

Applications

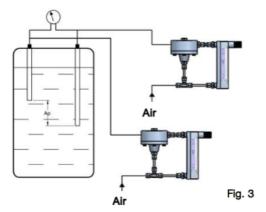
Mesure de Niveau Hydrostatique


La mesure de niveau hydrostatique par bullage peut être utilisé pour des réservoirs ouverts ou des réservoirs fermés préssurisés.

Réservoirs ouverts (fig. 1), la canne (non proposée) est alimentée en air ou gaz neutre avec une pression et un débit constant régulé par le système 2000 + RCD. A l'aide d'un manomètre de pression (non proposé) on mesure la hauteur de liquide dans le réservoir qui est égal à la pression (mmH₂O) dans la canne. L'ensemble de mesure comprend :

- Sonde de mesure de niveau montée dans le réservoir
- Manomètre de pression gradué en mmH₂O
- 1 système de mesure de débit série 2000 avec régulateur RCD

Dans le cas de réservoirs fermés pressurisés (fig. 2), les deux sondes sont reliées à un manomètre de pression différentielle qui indique de la même manière la hauteur du liquide dans le réservoir. L'ensemble de mesure comprend :


- 2 cannes de mesure de niveau montées dans le réservoir
- Manomètre de pression différentielle en mmH2O
- 2 systèmes de mesure de débit série 2000 avec régulateurs RCD

Mesure de variation de densité

Le système décrit antérieurement procure de plus d'autres applications pratiques comme la mesure de variation de la densité. Si on utilise deux cannes, un manomètre différentiel et deux régulateurs RCD, la mesure de densité est indépendante des variations de niveau.

Comme on peut l'observer en fig. 3, on installe deux cannes en dessous du niveau minimum, et avec une différence de hauteur entre chaque canne qui dépend de la densité du liquide, la précision requise et l'exactitude du manomètre différentielle. La variation de pression pour un même différentiel ou hauteur de niveau est fonction des variations de densité du liquide. La sensibilité du système est fonction de la hauteur H ou pression différentielle. La différence la plus habituelle de niveau est de 200 mm entre les prise de pression, ceci permet de mesurer avec précision des variations de 0,1g/cm3.

